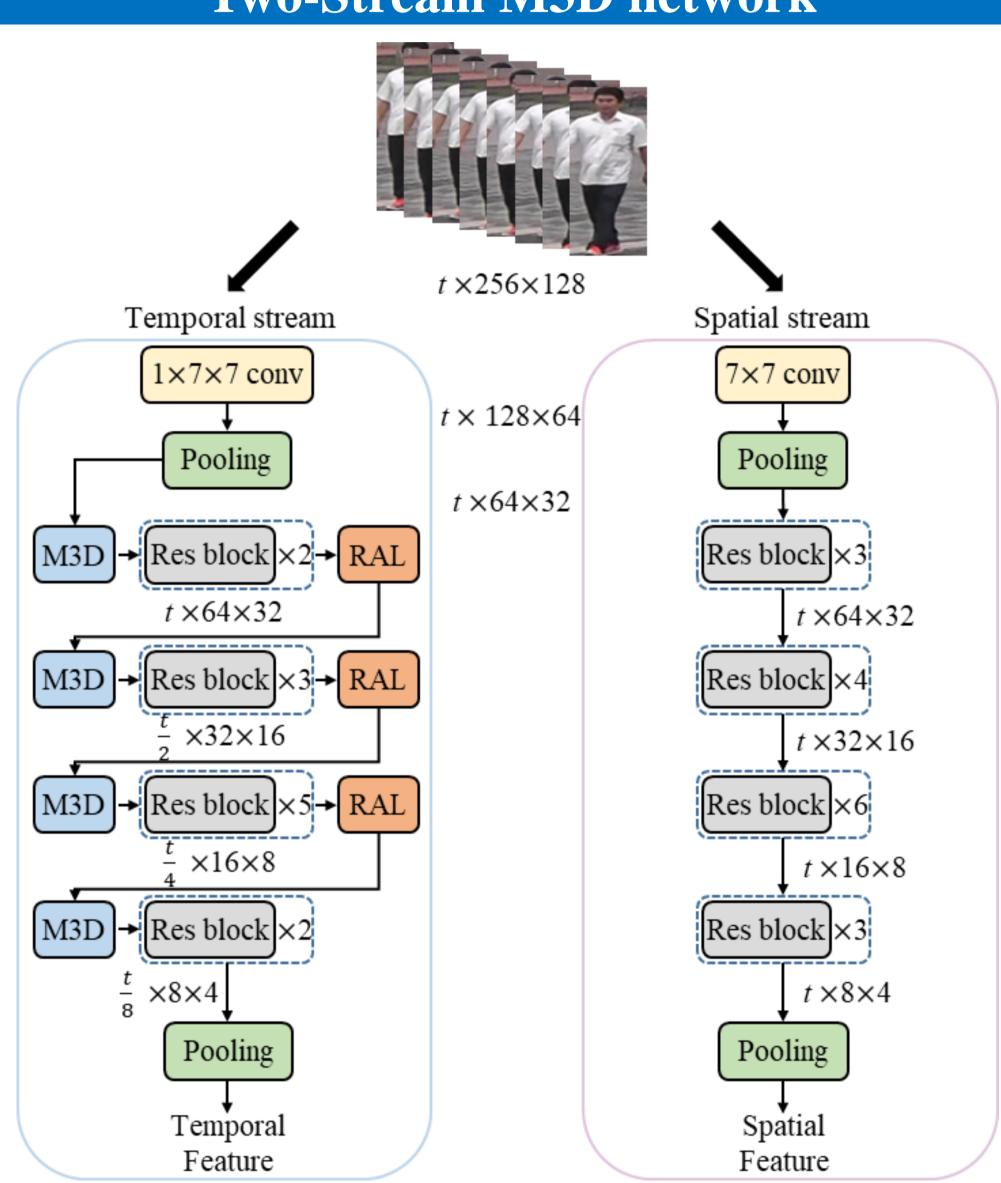
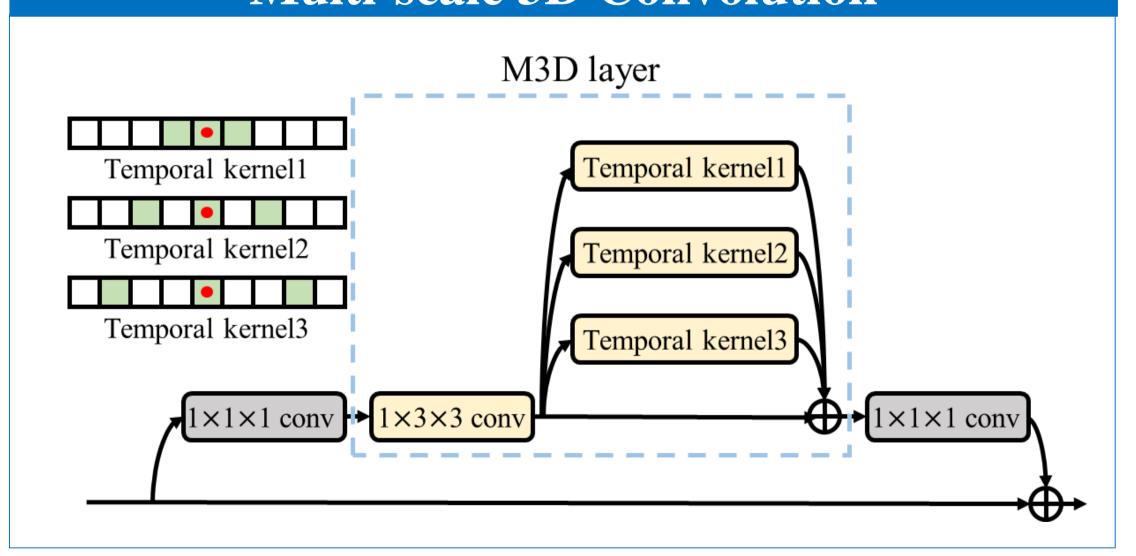


AAAI-19: Thirty-Third AAAI Conference on Artificial Intelligence

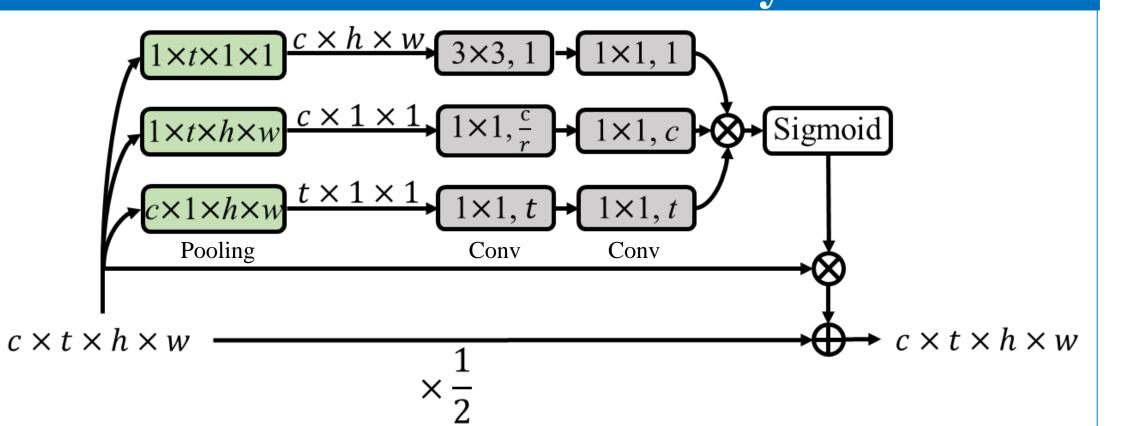
January 27 - February 1, 2019, Hilton Hawaiian Village, Honolulu, Hawaii, USA

Multi-scale 3D Convolution Network for Video Based Person Re-Identification


Jianing Li, Shiliang Zhang, Tiejun huang


Motivation

- **♦** Temporal cues are important for video ReID
- **◆** Existing 3D CNNs have small receptive field and too many parameters
- **♦** Low quality frame is unavoidable in real scene


Two-Stream M3D network

Multi-scale 3D Convolution

Residual Attention Layer

Contribution

- **◆** Propose M3D Convolution model to learn multiscale temporal cues
- **◆** Propose RAL to refine learned temporal feature
- **◆** Introduce a two-stream architecture to learn complementary spatial temporal representation

Experiment

♦ Comparison with 3D convolution methods

Method	Input Frames	mAP	r1	Speed	Params
2D CNN	1	62.54	76.43	796 frame/s	95.7MB
I3D	8 16	62.84 61.58	76.62 75.11	81.0 clip/s 38.7 clip/s	186.3MB
P3D-A	8 16	60.69	75.08 75.69	90.1 clip/s 46.9 clip/s	110.9MB
P3D-B	8 16	67.03 65.07	79.06 77.63	93.9 clip/s 48.7 clip/s	110.9MB
P3D-C	8 16	67.06 65.17	79.08 79.44	87.6 clip/s 45.4 clip/s	110.9MB
M3D	8 16	69.90 66.23	81.01 80.13	98.3 clip/s 49.1 clip/s	99.9MB

◆ Ablation study

Dataset	MARS		PRID	<i>iLIDS-VID</i>
Method	mAP	r1	r1	r1
2D baseline	62.54	76.43	82.02	49.33
M3D	69.90	81.01	87.64	70.00
M3D+RAL(s)	71.04	82.19	89.89	71.33
M3D+RAL(t)	70.66	81.81	88.76	71.33
M3D+RAL(c)	71.30	82.13	89.89	72.00
M3D+RAL	71.76	82.79	91.03	72.67
Two-stream M3D	74.06	84.39	94.40	74.00

♦ Comparison on MARS

Method	mAP	r1	r5	r20
DCF (Li et al. 2017a)	56.05	71.77	86.57	93.08
SeeForest (Zhou et al. 2017)	50.70	70.60	90.00	97.60
DRSA (Li et al. 2018)	65.80	82.30	_	-
DuATM (Si et al. 2018)	67.73	81.16	92.47	-
LSTM (Yan et al. 2016)	61.58	76.11	85.30	92.68
A&O (Simonyan et al. 2014)	63.39	77.11	88.41	94.60
Two-stream M3D	74.06	84.39	93.84	97.74

◆ Comparison on PRID&iLIDS-VID

Dataset	PRID		<i>iLIDS-VID</i>	
Method	r1	r5	r1	r5
IDE+XQDA (Zheng et al. 2016)	77.30	93.50	53.00	81.40
SeeForest (Zhou et al. 2017)	79.40	94.40	55.20	86.50
AMOC (Liu et al. 2017a)	83.70	98.30	68.70	94.30
QAN (Liu et al. 2017b)	90.30	98.20	68.00	86.80
DRSA (Li et al. 2018)	93.20	-	80.20	-
Two-stream M3D	94.40	100.00	74.00	94.33

Contact Information

Jianing Li(ljn-vmc@pku.edu.cn)
Shiliang Zhang(slzhang.jdl@pku.edu.cn)
The source code have been released.

