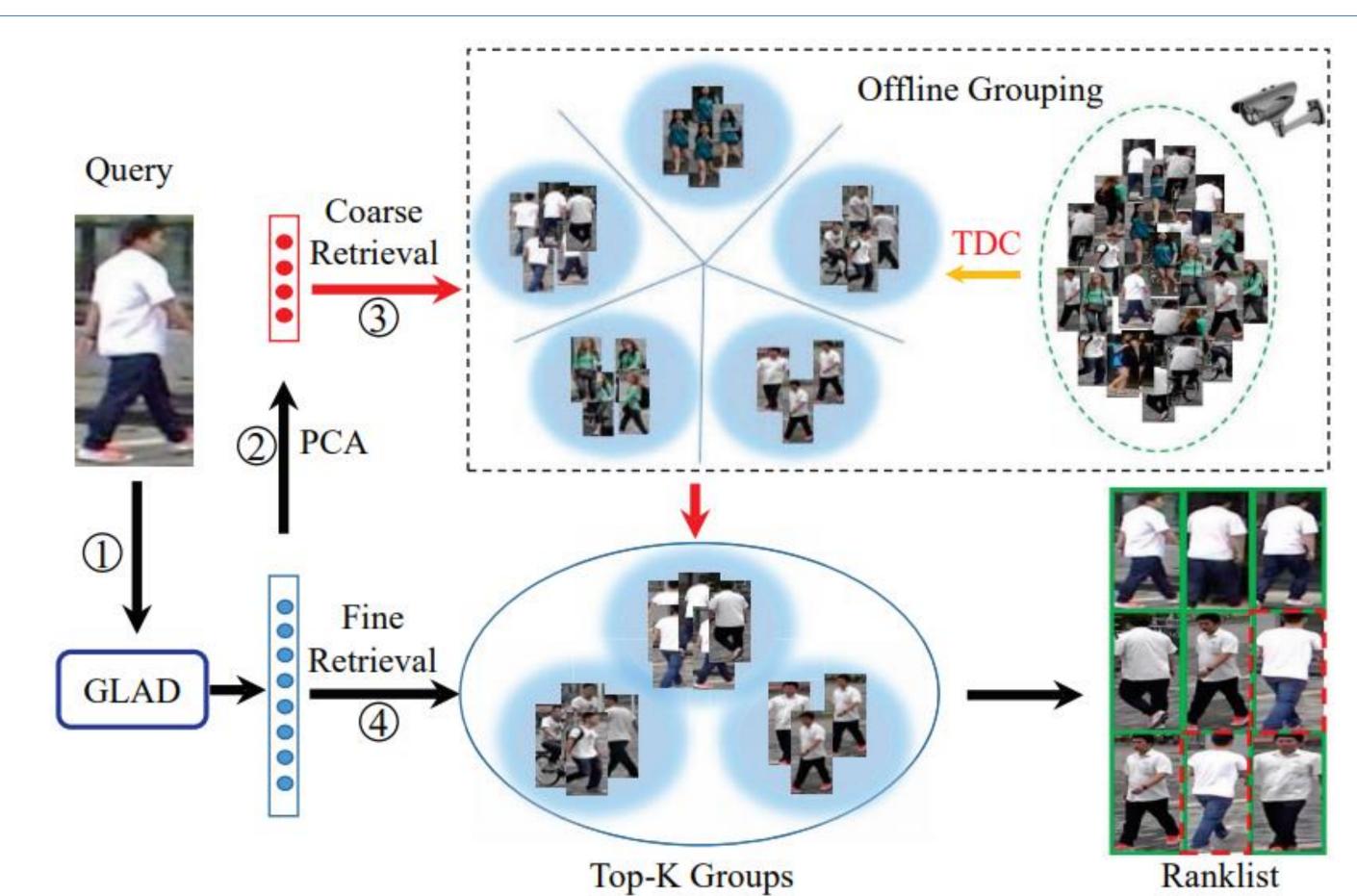
VP-ReID: Vehicle and Person Re-Identification System

Longhui Wei, Xiaobin Liu, Jianing Li, Shiliang Zhang

School of Electronic Engineering and Computer Science, Peking University, Beijing 100871, China

{longhuiwei,liu-xb,ljn-vmc,slzhang.jdl}@pku.edu.cn

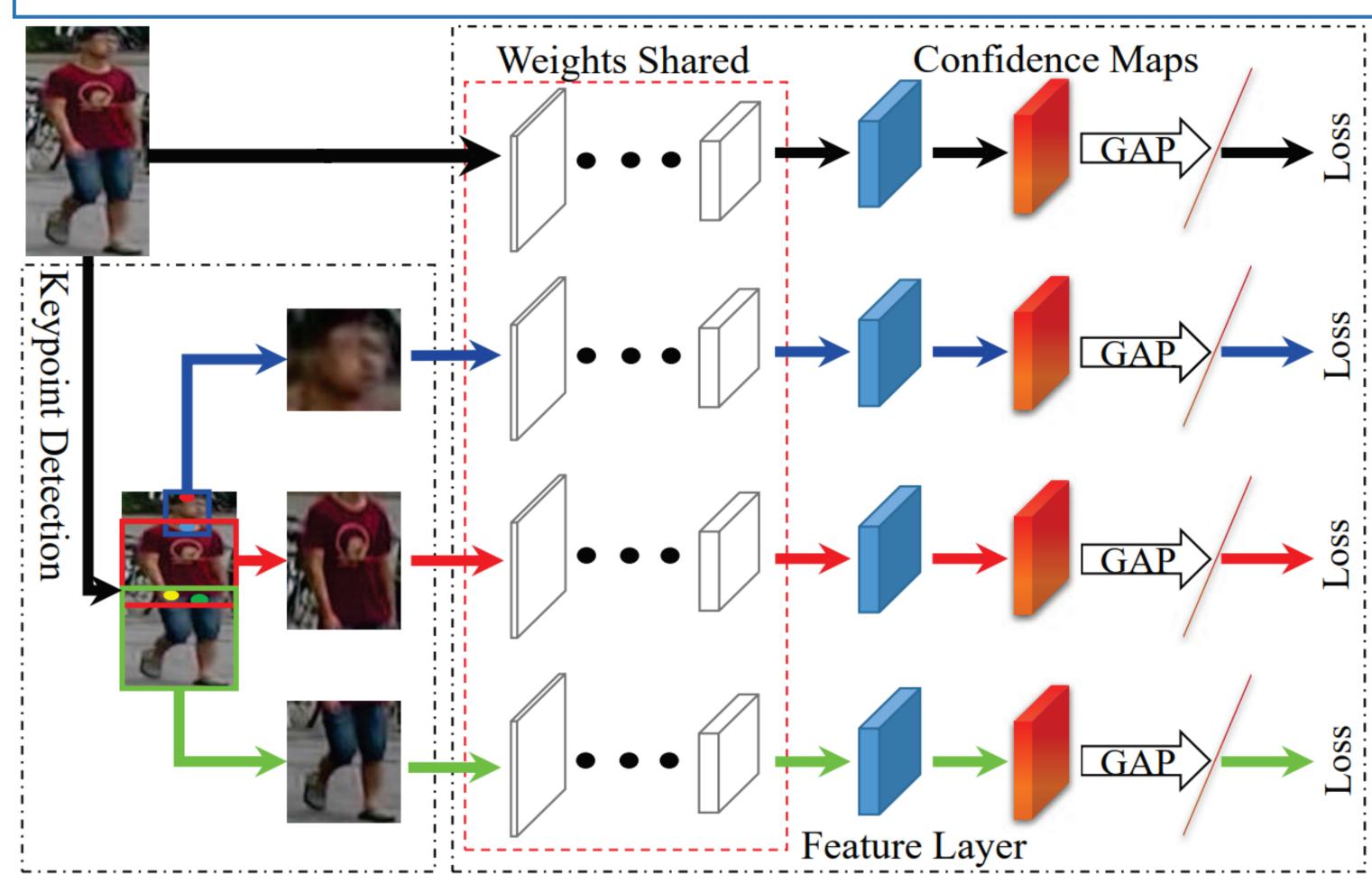

Abstract

Person Re-Identification (ReID) and vehicle ReID are the key technology in smart surveillance system. We develop a robust and efficient ReID system, named VP-ReID, to demonstrate our recent research progresses on those two tasks. This system is build based on our recent works including discriminative feature design and efficient off-line indexing. Constructed upon those algorithms, VP-ReID can identify vehicle and person efficiently and accurately from large gallery set.

Person Re-Identification:

Offline Grouping and Online Retrieval

- First offline clusters similar images into same group
- Images in returned groups are retrieved with original GLAD to generate an image rank list.



Re-ID Efficiency on Market 1501

θ	Group Number	Dim	mAP	Rank-1	Times(ms)
0.0000	19732	4096	73.9	89.9	368
0.0010	13509	4096	73.7	89.9	267
0.0015	8509	4096	73.2	89.9	176
0.0020	2558	4096	71.7	89.8	101
0.0015	8509	512	73.1	89.9	50
0.0015	8509	128	73.0	89.8	31
0.0020	2558	512	71.6	89.7	69
0.0020	2558	128	71.4	89.7	61

GLAD Descriptor

- GLAD explicitly leverages local and global cues to generate a discriminative and robust representation
- Learn complementary features on both coarse-grained local parts and global regions
- The matching of local representation can effectively handle the misalignment and pose change issues

Comparison On Market 1501

Part Extraction

Methods	mAP	rank1
MSCAN [Li, CVPR2017]	57.5	80.3
SVDNet [Sun, CVPR2017]	62.1	82.3
CSA [Zhong, CVPR2018]	68.7	88.1
PSE [Sarfraz, CVPR2018]	69.0	87.7
GLAD	73.9	89.9
GLAD + re-Ranking [Zhong, CVPR2017]	87.1	91.2

Descriptor Learning

Comparison On DukeMTMC-ReID

Methods	mAP	rank1
ACRN [Schumann, CVPR2017]	51.96	72.58
SVDNet [Sun, ICCV2017]	_	76.9
AACN [Xu, CVPR2018]	59.3	76.8
CSA [Zhong, CVPR2018]	57.6	78.3
PSE [Sarfraz, CVPR2018]	62.0	79.8
GLAD	62.2	80.0
GLAD + re-Ranking [Zhong, CVPR2017]	79.3	84.4

Vehicle Re-Identification:

Region-Aware deep Model (RAM)

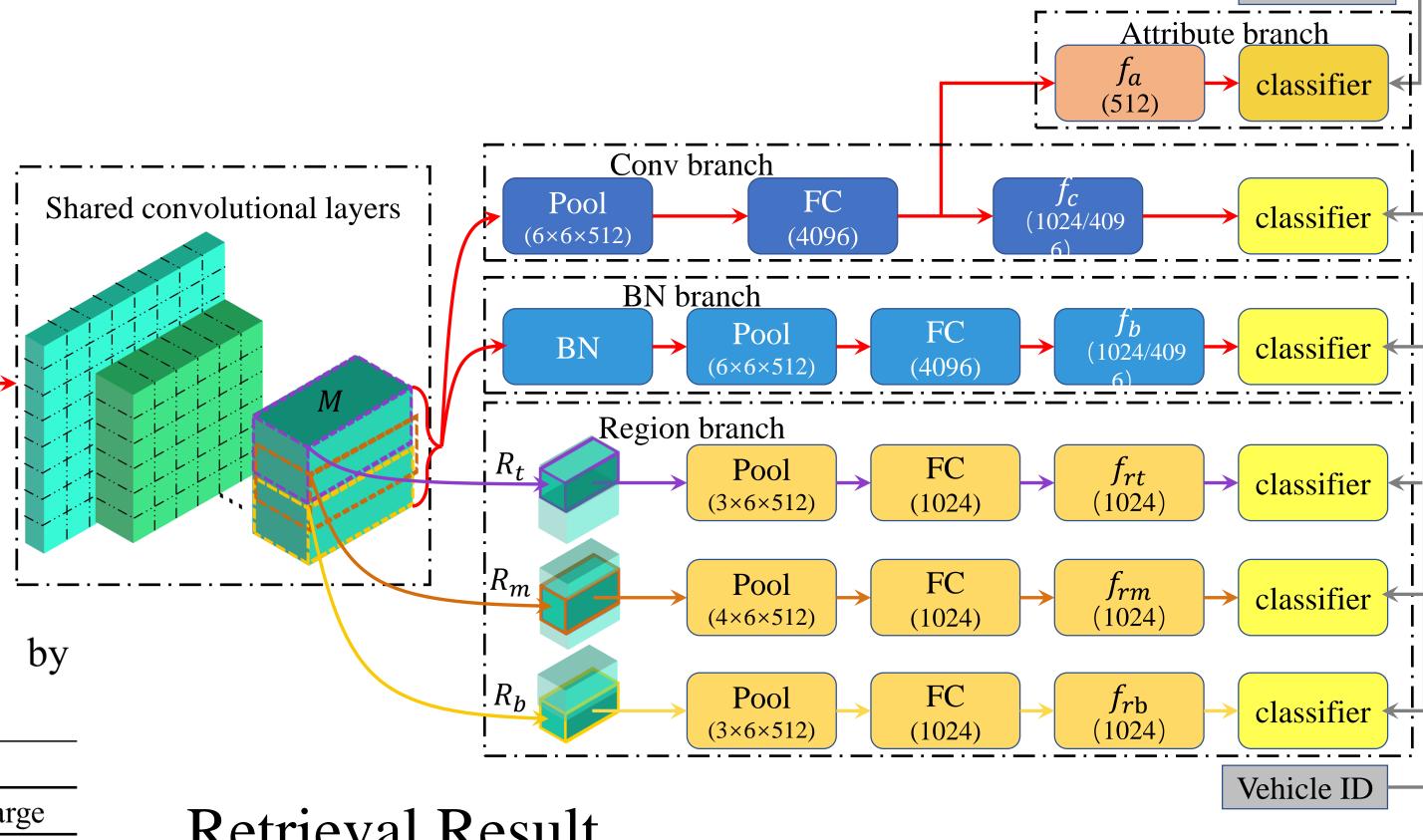
- We propose a Region-Aware deep Model (RAM) to jointly learn global and regional features.
- Attribute cues are additionally used to jointly train RAM.
- Learned features are more discriminative to detailed local cues, and contains attribute cues.

Experimental Results

1. Performance comparison of features learned by different models on VeRi.

Models	mAP	Top-1	Top-5
Baseline	0.550	0.848	0.931
BN	0.581	0.871	0.940
BN+R	0.609	0.887	0.941
RAM	0.615	0.886	0.940

Comparison with recent works on VeRi


o. Comparison with recent works on veki.						
Models	mAP	Top-1	Top-5			
FACT[Liu, ICME2016]	0.199	0.597	0.753			
FPSS[Liu, ECCV2016]	0.278	0.614	0.788			
SCPL[Shen, ICCV2017]	0.583	0.835	0.900			
OIF[Wang, ICCV2017]	0.480	0.659	0.877			
OIF+SF[Wang, ICCV2017]	0.514	0.683	0.897			
RAM	0.615	0.886	0.940			

2. Performance comparison of features learned by different models on VehicleID.

Models	Top-1			Top-5		
IVIOUEIS	Small	Medium	Large	Small	Medium	Large
Baseline	0.694	0.673	0.632	0.892	0.820	0.795
BN	0.722	0.705	0.666	0.904	0.853	0.832
BN+R	0.747	0.720	0.674	0.908	0.863	0.842
RAM	0.752	0.723	0.677	0.915	0.870	0.845

Comparison with recent works on *VehicleID*.

Models	Top-1			Top-5		
Models	Small	Medium	Large	Small	Medium	Large
VGGT[Liu, CVPR2016]	0.404	0.354	0.319	0.617	0.546	0.503
CCL[Liu, CVPR2016]	0.436	0.370	0.329	0.642	0.571	0.533
MDCCL[Liu, CVPR2016]	0.490	0.428	0.382	0.735	0.668	0.616
OIF[Wang, ICCV2017]	-	-	0.670	ı	-	0.829
RAM	0.752	0.723	0.677	0.915	0.870	0.845

Attributes